
The Ultimate

C H E C K L I S T

CODE TO CLOUD
SECURITY CHECKLIST

Code to cloud is a framework that centers around requirements for cloud-
native application development and builds application security into every
step of the software development lifecycle (SDLC) – from the first line of
code to deployment and runtime  in the cloud.

What is

Code to Cloud

73% 76%
45% of businesses have cloud-

based applications

of organizations say
 the number of point tools
they use cause blind spots

 of data breaches
happen in the cloud

Source: IBM

So, what does that
mean for the
teams involved?

In a code to cloud AppSec program, developers and AppSec
managers must be aligned, since they must work together to
identify and remediate vulnerabilities found at in every stage
of development.

In theory this close alignment, visibility into the SDLC, and
ability to remediate vulnerabilities before deployment can
help enterprises protect their business-critical applications
– however, this approach has its unique challenges.

https://www.ibm.com/reports/data-breach

Cloud-native applications have changed the way software is developed,
deployed, and managed. These applications differ significantly from
traditional monolithic architectures in several ways:

Microservice-based architectures, also known as composable
applications, make it easier to scale applications across cloud
environments. Organizations can deploy and scale individual
components of an application as needed, rather than the entire
application. In addition, a microservices-based architecture allows
for multiple development teams to develop and release different
parts of the application in parallel.

1 Microservices

The need to rapidly scale applications across multiple cloud
environments requires increased standardization in how applications
are packaged. Container platforms, like Docker, provide an abstraction
layer that enables developers to focus on the code specific to
their application. Containers package an application and all its
dependencies in a way that it can be consistently deployed across
multiple environments, including different cloud providers.

3 Containers

Microservice-based architectures have driven an increase
i n t h e u s e o f A P I s . A P I s a re u s e d to c o m m u n i c ate a n d
improve interoperability between microservices and third parties.
They also enable multiple development teams to work on different
components of the application, knowing how those microservices
will communicate with each other once deployed.

2 Application Programming
Interfaces (APIs):

Evolution of

Cloud-Native Applications
Impact and Significance

The Ultimate Code to Cloud Security Checklist | p. 3

Cloud-native application development has driven adoption of
DevOps methodologies. With 100s or 1000s of microservices
being developed in parallel, organizations need to operationalize
how applications are developed, built, delivered, and deployed
consistently at high scale and velocity. While DevOps means much
more than just required technical capabilities, it has driven increased
automation of different development steps and tasks across the SDLC.

5 DevOps

Deploying an application can require configuring many different
infrastructure components. With the cloud enabling applications
to be rapidly scaled up – and scaled down – these configuration
tasks are potentially performed on a repeated basis. IaC automates
infrastructure deployment using code, enhancing consistency, and
reducing manual errors. For example, AWS CloudFormation enables
defining and provisioning AWS infrastructure in a reproducible and
efficient manner.

4 Infrastructure as Code (IaC)

of organizations
have more than 50% of their
apps deployed in the cloud.73%

The Challenge

Securing Cloud- 
Native Applications

The proliferation of APIs has created new
security challenges, including data exposure
caused by shadow and zombie APIs. Shadow
APIs are undocumented and unknown to
s e c u r i t y t e a m s , w h i l e zo m b i e A P I s a re
abandoned, while remaining in production.
Both pose security and compliance risks.

I a C t e m p l a t e s a l l o w f o r p o t e n t i a l
misconfigurations, which can result in exposed
sensitive data or compromised access controls.
Storing IaC templates in insecure repositories
may invite malicious manipulation, resulting
in security breaches. Additionally, challenges
like configuration drift, unintended changes in
templates over time, and “ghost” resources,
untagged assets with potential cost and
maintenance can result in even more security
implications if not monitored  and addressed.

The agile development model enabled by
microservices can challenge AppSec teams. 
A single application can now be comprised
of dozens, or even hundreds, of microservices
– each an independent software project
worked on by different developers on a
different release schedule, and that must be
independently scanned for vulnerabilities.

Containerized environments can expand
the attack surface and require individual
c o m p o n e n t p r o t e c t i o n a n d m i c r o -
segmentation, particularly in the Kubernetes
control plane. The short- l ived nature of
containers makes it difficult to investigate
security issues. And their reliance on open
source components increases security risks
due to vulnerabil it ies that are potentially
exploitable by attackers.

Proliferation
of APIs

IaC Risks

The Microservices
Challenge

Attack
Surface Expansion

The Ultimate Code to Cloud Security Checklist | p. 5

The impact that cloud-native applications have can be immediate –
facilitating speedier innovation cycles, deployments, and communication
between development and AppSec teams. However, the transition to
cloud-native applications has some challenges.

The Need For

A Secure Cloud-Native
Application Lifecycle
Securing cloud-native applications presents a unique set
of challenges. As the pace of development continues to
increase, it is becoming harder for AppSec teams to keep
up with development. AppSec teams often find themselves
with multiple security tools to use at different stages of the
SLDC. This introduces another layer of complexities, since
these tools all must be managed separately, and many don’t
integrate with each other. Without that unified view and
overwhelmed by the number of potential vulnerabilities,
AppSec managers often try to slow down the development
process to remediate issues – or choose to release
applications with known vulnerabilities.

One of the most impactful ways organizations build
trust between AppSec and development teams, while
also managing tool sprawl, is consolidating their tools
into a unified platform – like Checkmarx One. Having
teams work with a unified platform not only gives them
visibility into the entire SDLC, but it also can help teams
become more efficient with vulnerability identification,
prioritization, and remediation. When enterprises invest in
building trust across their teams, they often can develop
a more secure and effective SDLC that aligns with the
dynamic nature of cloud-native applications.

90%

78%

of organizations have deployed known-
vulnerable code in production to meet
business or feature deadlines

of organizations experienced at least one
breach in the last year as a result of a
vulnerable application they developed

Checkmarx, 2024 The Future of AppSec Report

Checkmarx, 2024 The Future of AppSec Report

Discover a comprehensive checklist that
addresses the unique challenges of securing
cloud-native applications.

Keep reading

https://info.checkmarx.com/future-of-application-security-2024

https://info.checkmarx.com/future-of-application-security-2024

Application Security in the

Cloud-Native
Application Lifecycle
AppSec teams have known for years that different
vulnerabilities can be introduced or become apparent at
different stages of the SDLC (such as with SAST and DAST).
More recently, application security has embraced a “shift
everywhere” approach to securing application development.

When thinking about a code to cloud AppSec strategy, it’s
important to fully understand the complexity of the SDLC.
Securing applications effectively requires a holistic AppSec
strategy that focuses on building security from the first line
of code through deployment and runtime in the cloud.

at every stage in the SDLC.

37% 40% 32% 31% 29% 20% 12%

Design Code Check-in Display Go-Live FeedbackTestBuildTrain

Organizations find

vulnerabilities

A code to cloud approach to application security
starts with proper design. The design phase enables
multiple development teams to work on all the different
microservices in parallel, by defining how the components,
sub-components, and architectural elements come
together. From a security perspective:

API security: Proper API design allows developers to scan
documentation files to identify potential security risks and
misconfigurations that will appear once in production,
before writing a single line of code. Documentation can
be then shared with security teams to apply the proper
runtime security controls once the application is live in

production environments. Maintaining and updating API
documentation as code changes over time can help
identify inadvertent introductions of security risks into
the environment.

Threat modeling: Threat modelling can provide security
recommendations and requirements upfront where
they be easily integrated once in the coding phase. In
addition, using threat modelling can enable AppSec
and development teams to reach agreement on how
the application will be built – including when and where
security controls are applied.

Design

The Ultimate Code to Cloud Security Checklist | p. 7

https://checkmarx.com/blog/unifying-sast-and-dast-the-key-to-fostering-fearless-innovation/?utm_campaign=AssetClick_CodetoCloudWP

Once the application is designed, developers then
translate the blueprint into functional reality by creating
the code base through a combination of source code
that they write, supplemented with open source and
third-party software components.

Secure code training: Most developers have not
been sufficiently trained on application security risks
or implementing secure coding techniques to mitigate
risks like injection attacks, buffer overflows, and other
common vulnerabilities. Improving developers’ security
skills can not only benefit developers but also reduce the
number of vulnerabilities that make their way into code.

Static Application Security Testing (SAST): Scanning
source code for vulnerabilities is a foundation for any
AppSec program. However, many SAST solutions require
tuning for each application to maximize accuracy – i.e.,
finding the most true positives with the least number
of false positives. When applying a SAST solution,
organizations must consider the requirements of each
application. Business-critical applications can benefit
from tuning to identify maximum risk. However, the need
to cover every application requires low false positives
out of the box for less critical applications, even at the
expense of lower true positives.

A P I s e c u r i t y : Fo r a c l o u d - n at i ve a p p l i c at i o n ,
understanding risk often requires seeing vulnerabilities
through an API lens. Displaying detected vulnerabilities
per API allows AppSec and development teams to
prioritize risk by API. Discovering APIs while scanning
code can be much more effective at inventorying all the
APIs in an application. The global API inventory can then
be compared with the API documentation to identify
shadow and zombie APIs that were previously missed –
and likely not protected - in the production environment.

Secrets detection: In modern development teams,
developers within and across different teams must
collaborate when developing applications. This often
involves sharing of secrets, which can include passwords,
API keys, cryptographic keys, and other confidential data
that developers need to collaborate, but should not be
exposed to unauthorized users. Software supply chain
security should start in the coding phase by identifying
secrets shared in collaboration tools and preventing
accidental leakage.

Code

This phase is where the application starts to take shape.
Source code is compiled into executable files and creates
the foundation of the application. Developers often build
tools and systems to automate this process, to ensure
consistency in the generation of deployable artifacts in
the later stages of development.

Software Composition Analysis (SCA): Compiling
code and building the application starts to pull in open
source libraries and other dependencies. Securing
these third-party components and mitigating potential
vulnerabilities is essential for robust application security.
An SCA solution will identify vulnerabilities in open source
libraries and present AppSec teams and developers with
remediation options.

Malicious package protection: Open source security
has evolved beyond just identifying vulnerabilities
inadvertently introduced to an open source project. New
threats include malicious code intentionally contributed
by attackers to be exploited once the application is built.
Modern open source security must now identify malicious
code to guard against potential threats.

Software Bill of Materials (SBOM): Upon disclosure
of a new zero-day vulnerability, organizations need to
quickly identify if any application in their environment
includes a vulnerable version. This is complicated by
cloud-native application architectures, simply by the
increase in number of different application components
that must be validated. Having SBOMs for every software
project, along with proper SBOM storage and operational
processes, can greatly simplify response. This is where the
application is deployed into the production environment.

Build

The Ultimate Code to Cloud Security Checklist | p. 8

8M+
open-source packages inspected, finding
200,000+ malicious packages available as
threat intelligence to our customers

Here, we test the functionality, performance, and security of
the applications. Developers utilize various methodologies,
such as unit testing, integration testing, system testing, and
penetration testing to identify and fix any issues. This is
another place where automated tools help – since they can
help ensure comprehensive test coverage and expedite
feedback to the development team.

Dynamic Application Security Testing (DAST): Testing
of the compiled code is crucial to pinpoint vulnerabilities
and weaknesses in the application logic and codebase.
Neglecting dynamic testing could expose the application
to attacks that only become apparent once compiled.

Penetration testing: Penetration testing, whether using
DAST or other tools, will help uncover vulnerabilities and
weaknesses in the application, such as vulnerable third-
party components, data leakage, and session management
issues. Being aware of these issues at this stage will allow
for proactive remediation before deployment.

Test

100%
success rate in detecting and confirming
vulnerabilities in projects tested with
Checkmarx SCA

Deploy

With cloud-native applications, this stage involves
configuring servers, setting up databases, and deploying
application components on cloud infrastructure.
Continuous integration and deployment (CI/CD) pipelines
automate this process, which streamlines deployment
workflows and minimizes human errors.

Container security: While container security is a practice
that spans multiple SDLC stages, security risks become
pronounced in the deploy stage. To reduce risk, static
container images should be scanned for vulnerabilities –
both in proprietary source code and open source libraries –
prior to building and deploying the containerized application.

IaC Security: Improperly configured access controls
during deployment may result in unauthorized users
gaining access to sensitive data or functionalities.
Ensuring the deployment environment is properly
configured is important to prevent misconfigurations
that could lead to security vulnerabilities. Like scanning
static container images, IaC templates should be scanned
for security issues and other misconfigurations earlier in
the SDLC, so they can be called upon and executed as
needed in the deploy phase.

The Ultimate Code to Cloud Security Checklist | p. 9

The newly developed, or updated, application is now
released for full-scale operation. Here the application
transitions out of the testing environment into a live
production environment. This phase requires meticulous
planning and coordination to ensure a seamless transition
and often includes data migration, user training, and
monitoring system performance to flag any potential
issues during the initial rollout.

Protecting cloud-native applications requires a different
approach than protecting traditional applications – and
securing application development. A single application
can be made up of different microservices that are
running in multiple cloud regions or even different cloud
providers. Application workloads are continuously in flux,
scaling up and down to meet demand. And ownership of
infrastructure security is shared between enterprises and
cloud providers. Some of the required capabilities include:

Container security: Prior to the go-live stage, container
security focuses primarily on scanning static containers
images. But in production environments, it must do much
more to protect container workloads running in the cloud.
Including scanning running containers for vulnerabilities,
posture management, forensics, threat detection, and blocking.

Cloud Workload Protection Platform (CWPP): CWPP
solutions focus on the application workload running
in a cloud environment. This can include a range of
capabilities, from network security (like firewalling and
micro-segmentation), to monitoring running the application
workloads, to detecting and investigating anomalies in
application behavior, and even anti-malware scanning.

Cloud Security Posture Management (CSPM):
Cloud-native applications are designed to run on
cloud infrastructure with many different infrastructure
components that must be properly configured. CSPM
monitors the cloud infrastructure and configuration and
identifies misconfigured resources that must be addressed.

Web Application and API Protection (WAAP):
Cloud WAAP solutions protect applications running in
production environments from runtime attacks. It includes
traditional capabilities like web application firewall (WAF),
distributed denial of service (DDoS) protection, bot
management, and API Security.

Go-live

10% of malicious images are
undetectable using static
analysis tools alone

Source: Sysdig

The Ultimate Code to Cloud Security Checklist | p. 10

https://sysdig.com/blog/2023-global-cloud-threat-report
https://sysdig.com/blog/2023-global-cloud-threat-report/

A fundamental requirement in cloud-native application
security is the ability to integrate with the code to cloud
development workflow. Application security must
adapt to how organizations are developing cloud-native
applications, which includes implications on scale and
velocity. Integrating security into the development
process can look like:

IDE integrations: Rather than forcing developers to learn
and use new security-specific tools, meet developers
where they are. Bringing security findings and remediation
guidance into their Integrated Development Environment
(IDE) can make it easier for developers to participate in
an application security program.

SCM integration: Integrating directly with Source Code
Management (SCM) systems allows for security scans
to be automatically triggered as part of the development
process, as early as check-in. This allows vulnerabilities
to be found while developers are still working on the code,
making it easier to address any issues discovered.

Pull request decoration: Integrating with the SCM also
enables the ability to decorate the pull request, inserting
security findings into the change documentation and
facilitating security awareness as part of the development
process.

Feedback tool integration: Integrating with bug
ticketing systems, like JIRA, and collaboration systems,
like Slack, allow for security issues to be communicated
via channels already used by developers.

A code to cloud strategy is only effective when developers
and AppSec teams trust each other and can work
together effectively to create a proactive security culture
within an organization. By streamlining security practices
into the development workflow, Checkmarx believes that
security should be an integral part of the development
process, and not an afterthought.

Developers and Security Teams

Achieving Synergy

API security scans
documentation

Security learning
upskills devs

SAST scans code
as it’s checked in

IDE integration brings
security into workflow

DAST tests how
apps behave

SCA scans open
source packages

IaC security scans
IaC templates

Runtime solutions
protect live apps

Design Code Check-in Display Go-Live FeedbackTestBuildTrain

The Ultimate Code to Cloud Security Checklist | p. 11

The Ultimate Code to Cloud Security Checklist | p. 12

The Checkmarx

Code to Cloud Approach

Checkmarx One provides the full suite of
capabilities required to secure development
of cloud-native applications, including SAST,
SCA, software supply chain security, API security,
DAST, container security, IaC security, and secure
code training – all on a unified, consolidated
application security platform.

Checkmarx One starts with unified analytics and
reporting to provide a single view into all your
vulnerabilities, but the promise of code to cloud is
greater. By correlating security data across every
stage in the SDLC – including runtime insights –
Checkmarx One can provide true visibility into
the vulnerability lifecycle. This helps AppSec
teams identify and prioritize the most exploitable
vulnerabilities in cloud-native applications, while
pointing developers to the exact line of code to
fix withactionable remediation guidance.

Checkmarx One was built from the ground up
to provide all the capabilities needed to secure
applications from code to cloud. Our Fusion
engine correlates security data from every tool
to help prioritize remediation. Unified analytics
and reporting provide a comprehensive view of
the application risk across your entire application
footprint – including both cloud-native and
traditional non-cloud applications.

Checkmarx One offers the broadest set of
integrations to bring security into the SDLC,
including IDEs, SCM tools, CI/CD tools, and
feedback tools. This enables security scans to
be automatically applied as every application
progresses from code, to build, to deploy, and
go-live in the cloud. With a consolidated AppSec
platform, you can seamlessly integrate your
security tools into your SDLC once.

Comprehensive AppSec
capabilities

Visibility from
code to cloud

Unified AppSec
platform

Seamless integration
across the SDLC

While many vendors approach cloud-native application security from an
infrastructure, network, or workload perspective and then shift left, we
believe that it must start from the very first line of code. Our industry leading
Checkmarx One platform offers all the capabilities you need to secure every
stage of the SDLC, correlate security findings, and then prioritize remediation
for developers to make the biggest business impact.

Understanding the phases of an application’s lifecycle is necessary when thinking
about how you can implement security throughout your SDLC. The code to
cloud approach we’ve outlined relies on proactive AppSec at every step, from
the first line of code to ongoing runtime monitoring.

This approach not only addresses vulnerabilities at each stage, but also helps
organizations develop a strong culture of security within development and
security teams.

Checkmarx is the leader in application security and ensures that enterprises worldwide can secure their application
development from code to cloud. Our consolidated platform and services address the needs of enterprises by improving
security and reducing TCO, while simultaneously building trust between AppSec, developers, and CISOs. At Checkmarx, we
believe it’s not just about finding risk, but remediating it across the entire application footprint and software supply chain with
one seamless process for all relevant stakeholders.

We are honored to serve more than 1,800 customers, which includes 60 percent of all Fortune 100 companies including
Siemens, Airbus, SalesForce, Stellantis, Adidas, Wal-Mart and Sanofi.

Final Words

Speak With Us

See why a code to cloud approach is

critical for business success

https://checkmarx.com/request-a-demo/?utm_campaign=AssetClick_codeToCloud

Printable Checklist

Test

DAST or penetration testing to test compiled

applications in your test / dev environment prior to

deploying

Deploy

Container security to scan static container images for
vulnerabilities and can:

•	 Integrate with SCA to identify vulnerabilities in
open source software

•	 Integrate with container development tools like
Docker Desktop

•	 Integrate with runtime container security
solutions to correlate and prioritize remediation

•	 Infrastructure as Code (IaC) security to scan
IaC templates for potential security risks
and misconfigurations

Compliance and Documentation

Compliance adherence

Documentation

Go-Live

Container security to protect running
containerized applications

Cloud Workload Protection Platform (CWPP) to
protect application workloads running in cloud environ

Cloud Security Posture Management (CSPM) to
monitor cloud infrastructure and identify
resource misconfigurations ments

Web Application and API Protection (WAAP) to
protect against runtime attacks, like web application,
DDoS, bot, and API attacks

Visibility and Insight

Unified dashboard to display vulnerabilities from all
AppSec tools in one place

Vulnerability management to analyze and triage
vulnerabilities from all AppSec tools with one process

Correlation of vulnerabilities across the SDLC stages

Prioritization to focus remediation on the most
exploitable vulnerabilities first

Design

Scan API documentation files to identify
vulnerabilities and misconfigurations

Automatic threat modelling to identify security
recommendations and requirements upfront

Code

Secure code training to upskill developers on
application security practices

Static Application Security Testing (SAST) to scan
source code for vulnerabilities and can:

•	 Support every programming language
and development framework used by your
development teams

•	 Offer flexibility to tune SAST coverage for
specific mission-critical applications

•	 Provide low false positives (FPs) out of the
box for developer experience

•	 Integrate with Source Code Management
(SCM) tools to automate scanning at code
check-in and decorate pull requests (PRs)
with security findings

•	 Integrate with developer Integrated
Development Environments (IDEs) to bring
remediation into developer workflow

•	 Integrate with bug ticketing tools to integrate
remediation with the developer workflow

“Shift-left” API security that can:

•	 Discover APIs in source code (and not rely on
API documentation)

•	 Provide an API-centric view into vulnerabilities

•	 Identify shadow and zombie APIs

Secrets detection to identify and prevent secrets
leakage in collaboration tools used during the
development process

Build

Software Composition Analysis (SCA) to secure the
use of open source software and can:

•	 Identify known vulnerabilities in open
source libraries

•	 Identify malicious code in open
source dependencies

•	 Integrate with build tools to automate
scanning as part of the build process

•	 Integrate with developer Integrated
Development Environments (IDEs) to bring
remediation into developer workflow

Software Bill of Materials (SBOM) to track use of
open source software in applications

