
7 Proven Strategies to Unlock DevSec Adoption of AppSec | p. 1

Whitepaper

to Unlock Developer Adoption
An AppSec team’s success is not only measured by its ability
to find vulnerabilities, but equally, if not more important, by its
ability to get them fixed effectively. Getting strong developer
buy-in is an inherent part of it.

In this guide, we present seven proven strategies to achieve
this through cultivating a stronger relationship with dev teams
and facilitating adoption.

7 Proven Strategies

7 Proven Strategies to Unlock DevSec Adoption of AppSec | p. 27 Proven Strategies to Unlock DevSec Adoption of AppSec | p. 2

The strategies set forth in this document, which are designed to
get dev teams to adopt a security-minded approach and integrate
security into their workflows through tools, training, and support,
don’t just look good on paper. They bring tangible results, such as
in the case of this Fortune 500 company.

Before following our strategies, they spent the first year and a half
remediating only 50 vulnerabilities per quarter – 300 vulnerabilities
in total. Afterward, they were able to fix 2,000 vulnerabilities the
following quarter and accelerated to a run-rate of over 15,000
vulnerabilities fixed every quarter only six months later.

Getting Vulnerabilities
Fixed Faster

16000

14000

12000

10000

8000

6000

4000

2000

0

Vulnerabilities Remediated

Q1 Q2 Q3 Q4

7 Proven Strategies to Unlock DevSec Adoption of AppSec | p. 3

Integrate with existing tools and workflows

Help Developers Fix Vulnerabilities Faster

Point to the Most Critical Fixes

Shift as Far Left as Possible

01 02

The allocation of responsibilities is clear: Security finds
vulnerabilities, developers fix them. To make that happen,
security teams need to make it easier for developers to fix
the vulnerabilities they find. That requires integrating into
existing tools and workflows to minimize the amount of
additional friction. Unfortunately, for many organizations
that is not the case: Many organizations still deliver scan
results to developers in spreadsheets and PDF reports.

A better way is to provide security findings within the tools that
are part of their developers’ daily workflow: the IDEs where
they write code, source code management (SCM) where they
commit and review code changes, bug ticketing systems
where they respond to software issues, and collaboration
tools where they communicate with other team members.
For developers, working on security issues should feel no
different than working on feature development or bug fix.

By allowing security tools to integrate directly into the
developer's workflow—whether it's their IDE or SCM—
developers can stay in the environment they’re already
comfortable with, ensuring that security becomes part of their
day-to-day tasks rather than an external, disruptive process.

While there’s a time and place for training courses, most
developers just want to fix what’s in front of them at the
moment. Security teams can improve DevSec cooperation
and trust by making it easier for developers to fix a vulnerability
compared to a normal bug: For most bugs, developers need
to reproduce the issue before they can diagnose the root
cause, identify where in the codebase it lies, and make
the fix – often a tedious and time-consuming process.

Similarly, traditional AppSec tools often force developers
to leave their familiar environments and navigate unfamiliar
security platforms, resulting in frustration and disengagement.

Instead, look for a code security tool that understands the
data flow of an application and can identify and point to the
exact line of code to fix a vulnerability. Advanced AppSec
tools can also include AI guidance or even auto-remediation
with code snippets that fix the vulnerability. This speeds
up remediation while helping developers learn about the
vulnerability, aided by AI assistants that can answer any
additional security questions live. By providing in-line guidance
and easy-to-understand fixes, developers can address
vulnerabilities directly in their development environment,
reducing frustration and streamlining their process.

Most developers have more bugs than they can fix, even
before you pile vulnerabilities on top. Security teams
must think realistically about which vulnerabilities they
absolutely need fixed, and which would be merely nice to fix.

It’s well known that traditional severity ratings don’t
reflect real-world risk. Security teams need better ways
to assess the risk of a vulnerability. For example, static
reachability analysis helps understand if a vulnerability is
actually exploitable, while runtime reachability analysis
helps understand if a vulnerability is exposed to the
open Internet from within a production environment.

Understanding real-world risk and directing developers to
only the most critical vulnerabilities to fix can help make
a meaningful impact on reducing actual (as opposed to
theoretical) risk without overburdening development teams.

Vulnerabilities will always exist and helping developers
fix them faster will always be a necessity. However,
empowering developers to address security issues
before they enter the codebase can help minimize
the amount of technical debt that builds up over time.

Look for tools that allow developers to trigger security
scans right from their IDE, so they can validate that their
code is secure moving forward. Likewise, the ability to
scan local branches allows them to scan code on their
machines before it’s checked into the repo. New AI secure
coding assistants take this a step further by automatically
scan code as it’s being written, providing immediate
feedback to correct issues while developers are in their IDE.

03 04

7 Proven Strategies to Unlock DevSec Adoption of AppSec | p. 4

Provide Secure Code Training Cultivate Security Champions

Define Joint Metrics to Track Progress

Most security tools only help developers fix vulnerabilities
after they’re already introduced. This results in piecemeal
learning that occurs through trial and error, if at all. Helping
developers learn to recognize common vulnerability
patterns, understand attack vectors, and implement proper
defensive measures can provide a greater impact with more
comprehensive coverage of essential security concepts.

In addition, structured training can ensure consistent
security knowledge across development teams. When all
developers share a common understanding of security
principles and best practices, they can better collaborate
on security issues, conduct more effective code reviews,
and establish shared secure coding standards. This
collaborative environment helps create a security-minded
culture where secure coding becomes a natural part of
the development process rather than an afterthought.

Security champions serve as vital bridges between
security and development teams. As developers, they
have a deep understanding of their team’s codebase
and challenges and can provide immediate guidance
and support to other developers. By speaking the
same technical language and sharing similar daily
experiences, they’re often more effective at conveying
security concepts than external security teams.

Security champions are an impact multiplier for security
awareness and adoption among developers. As respected
members of their development teams, they influence security
culture from within, making secure coding practices feel less
like external mandates and more like natural engineering
best practices. Their success stories and practical
solutions can be shared across teams, creating organic
growth in security adoption throughout the organization.

What gets measured gets managed: Metrics shape
behavior by focusing attention on what matters most,
so choosing the right metrics is essential. Key security
metrics often include Mean Time to Remediate (MTTR),
which tracks the average time to fix vulnerabilities, and
Change Failure Rate, which measures the percentage
of releases requiring security fixes post-deployment.

However, security teams should avoid focusing solely on
‘negative’ metrics like vulnerability counts. ‘Positive’ metrics,
like secure development training completion, developer
adoption of security tools, and proactive security design
reviews, can encourage teams to build security in from the start
rather than treating it as an afterthought. And remember –
metrics shouldn’t just be for developers. Metrics like Lead Time
can encourage security teams to ensure that their security
tools and practices meet the needs of development velocity.

05 06

07

The AppSec Platform for DevSecOps
Introduce AppSec that empowers developers with

Request a Demo

The path to unlocking developer adoption is not about forcing compliance, but
rather empowering developers to view security issues as part of their scope of
work. Consequently, they will fix security issues faster and more effectively. By
making security accessible, actionable, and aligned with development practices,
organizations can create a sustainable security program that keeps pace with
evolving threats without slowing down development.

Going From Found to Fixed

Checkmarx helps the world’s largest enterprises get ahead of application risk without slowing down development. We end the guesswork by
identifying the most critical issues to fix and give AppSec the tools they need, all while letting developers work the way they want. From DevSecOps
to developer experience, security and development teams can now work better together. That’s why 1700+ customers rely on Checkmarx to scan
over 1 trillion lines of code annually, improve developer productivity by 50%, and deliver 2X AppSec ROI.

Checkmarx. Always Ready To Run.

https://checkmarx.com/request-a-demo/

